TEMPLE SHADOWS AT CEDAR HILLS

CAPITAL RESERVE STUDY

Beginning Period: January 1, 2016 Ending: December 31, 2016

Report Number: 11-03-02 Site Inspection Date: October 29th, 2011 Report Submittal Date: November 3rd, 2011 Revision Date March 8th, 2016

Table of Contents

1.0	Executive Summary	. 1
1.1	Overview	. 1
1.2	Major Expenditure Milestones	. 1
1.3	Reserve Account Savings Recommendations	. 2
2.0	Purpose of Reserve Study	. 3
3.0	Physical Analysis	. 5
3.1	Site Visit	. 5
3.2	Component Criteria	. 5
3.3	Determining Useful Life and Remaining Useful Life of Assets	. 5
3.4	Estimating Replacement Costs of Assets	. 6
3.5	Maintenance Assumptions	. 6
4.0	Funding Analysis	. 7
4.1	Funding Goals	. 7
4.2	Reserve Fund Income	. 7
4.3	Projected Expenditures and Reserve Fund Needs	. 7
5.0	Summary and Recommendations	11
5.1	Current Reserve Fund Status	11
5.2	Recommended Funding Adjustments	12
6.0	Statement of Limitations	13
7.0	Author Credentials	15
8.0	Appendix A – Terms and Definitions	16
9.0	Appendix B – Tabulated Inventory	19
10.0	Appendix C - Photographic Inventory	19

1.0 Executive Summary

1.1 Overview

Temple Shadows HOA was visited by consultants from YKL Consulting on October 29th, 2011. Rich Wells of TPM property management instructed YKL personnel as to which assets were to be included as part of the reserve fund. At the time of the site visit a physical assessment of major community components was completed and components were quantified, logged, and photographed. Temple Shadows is a 40 unit PUD (Planned Unit Development) community built in one phase. The community common area property includes private lanes, landscaped common area, playground area, automated gate, and clubhouse with pool. This report was revised with updated financial information and maintenance dates for the year 2016.

1.2 Major Expenditure Milestones

The major future expenses for the community are re-roofing the clubhouse, maintaining and replacing the fencing, and private road maintenance. The exteriors of the individual units are the responsibility of the homeowner and do not need to be included in the study. Private road maintenance consists of 2" asphalt overlays every 20 years and slurry seals every 5 years. This is a major expense and the first milestone for the reserve fund savings plan. 2021 is the date used for when the entire community will need to apply a 2" asphalt overlay on the private roads. The 6' high PVC vinyl fence has a life span of around 25 years, at which time it will need to be replaced. This is planned to occur in 2026 and is the second milestone in the reserve study. These two milestones drive the financial analysis and are the major dates for expenditures from the fund. These components are the most expensive to replace, and as such, should be maintained in a manner that ensures full useful life from the components. Premature wear and failure will add a significant burden to the HOA finances. It is recommended that a hazardous concrete replacement program be started, with specific areas of concrete replaced within the next five years. A minimal cost of \$15,000 and recommended cost of \$20,000 is budgeted in 2017 for this item.

1.3 Capital Reserve Account Savings Recommendations

A savings plan is recommended based on a high estimate of component costs. The current reserve balance as of January 2016 is \$94,627. It is recommended that the HOA budget be modified to include \$60/unit per month charge through the end of 2016. Starting in 2017 the monthly amount increases at an annual rate of 5% through 2021. Starting 2022, the amount remains static at \$80/unit per month. These amounts are dependent on constant savings and inflation rates, and as such a revised study should be completed every three to six years to confirm conditions have not changed significantly. A lower amount was calculated assuming lower replacement costs and inflation. This is shown in Section 5.0, summary and recommendations. If the reserve fund does not meet the minimum expenditures needed, then a situation will arise where special assessments, deferred maintenance, and lower property values are inevitable.

Table 1.3.1 – Summary of initial conditions, assumptions, and recommendations.

Description	Value
Current Reserve Account Balance	\$94,627
Current Monthly Unit Contribution to Capital Reserve Fund	\$50.65
Assumed Earned Interest	0.9%
Assumed Rate of Inflation	3.5%
Recommended Monthly Unit Charge to Reserve Account for 2016	\$60.00
Recommended Monthly Unit Charge to Reserve Account for 2017	\$63.00
Recommended Monthly Unit Charge to Reserve Account for 2018	\$66.15
Recommended Monthly Unit Charge to Reserve Account for 2019	\$69.46
Recommended Monthly Unit Charge to Reserve Account for 2020	\$72.93
Recommended Monthly Unit Charge to Reserve Account for 2021	\$76.58
Recommended Monthly Unit Charge to Reserve Account for 2022	\$80.00

2.0 Purpose of Capital Reserve Study

This capital reserve study has been prepared to provide guidance necessary to adequately prepare the Home Owners Association (HOA) to meet financial obligations associated with maintenance, repair, and replacement of common area components. Ideally, these financial obligations are met using resources that have been set aside as part of a reserve fund. Following the recommendations of the reserve study will help prevent a financial assessment of unit owners beyond the required HOA fees. The HOA board has fiduciary duty to manage and plan for these obligations while also balancing HOA membership fees and long-term property value. The reserve study helps facilitate this responsibility.

Many states have laws that require HOA's perform reserve studies. Utah Legislative bill SB278, passed March 2010, amended the Condominium Ownership Act (Utah Code 57-8-7.5) and the Community Association Act (Utah Code 57-8a-211) to require the following within the state of Utah:

- Conduct a reserve analysis every six years.
- (2) (a) (i) ... cause a reserve analysis to be conducted no less frequently than every six years ...
- Conduct a reserve analysis before July 1, 2012.
- (2) (a) (ii) .. .if no reserve analysis has been conducted since March 1, 2008, cause a reserve analysis to be conducted before July 1,2012...
- Update a reserve analysis every three years.
- (2) (b) ...update a previously conducted reserve analysis no less frequently than every three years.

In addition to the legal requirements, a properly prepared reserve study will benefit the community by aiding property management and boards in making budget and reserve account decisions based on solid analysis and information. It has been found that in-house reserve calculations done by the developer may not accurately reflect any changes that may have taken place during construction. These have generally been found to be inadequate, and have, at times, resulted in untimely assessments of unit owners.

This capital reserve study should be reviewed carefully. It may not include all common and limited common element components that will require major maintenance, repair, or replacement in future years, and may not include regular contributions to a reserve account for the cost of such maintenance, repair, or replacement. The failure to include a component in a reserve study, or to provide contributions to a reserve account for a component, may, under some circumstances, require you to pay on demand as a special assessment your share of common expenses for the cost of major maintenance, repair, or replacement of a reserve component.

The Board should be careful about deviating from reserve study recommendations. A reserve study recommends a funding plan that steers the HOA away from special assessments. If the board decides to fund reserves less than recommended, the risk of special assessments grows.

If a special assessment is needed due to underfunding, a case could be made that the board did not fulfill its fiduciary duty and be held personally liable. Just as importantly, past owners who have sold will not have paid their fair share. Unless there is a compelling reason to deviate, the board should follow the recommendations of this study.

This reserve study was based on an evaluation of the HOA's repair and replacement obligations of existing components. Determination of costs and timing of repairs/replacements along with determination of available reserve capital form the base line for projected future costs.

These components are found by means of a physical analysis (Section 3.0) and funding analysis (Section 4.0). The physical analysis consists of a site visit to observe the existing condition of the HOA common components. A list of pertinent components was compiled and assessed according to age and condition, as discussed hereafter. Based on this assessment, it is possible to estimate the replacement costs.

According to the association funding goals, and the existing financial store, contributions are recommended such that the reserve account can be fully funded. The account is considered "fully funded" when all financial obligations can be met, without forcing an assessment on unit owners.

3.0 Physical Analysis

3.1 Site Visit

Temple Shadows HOA was visited by consultants from YKL Consulting on October 29th, 2011. Rich Wells of TPM property management instructed YKL personnel as to which assets were to be included as part of the property management operating reserve and those to be included as part of the capital reserve fund. At the time of the site visit a physical assessment of major community components was completed, and components were quantified and logged. Also, photographs depicting current the condition of these items were taken. These photographs are included in Section 10 for reference. This report was revised with updated financial information and maintenance dates in 2016.

3.2 Component Criteria

The components assessed in this study must meet four general criteria. First, the components must be under the jurisdiction of the HOA – or common property. Second, the component must meet a minimum cost threshold. Costs required for small, regular maintenance on daily, weekly, or monthly basis, are assumed to be met with funds set aside for routine property care; the HOA operating account. Third, the component must have limited lifecycle. This study forecasts expenses over 30 years, thus lifecycles estimated beyond the study period would be excluded. Finally, the component must have predictable life duration. Damage to components associated with settlement, fire, earthquakes, flooding, or misuse is not considered predictable, or measurable. Generally a cost for repair of this type of damage (except flooding) is covered by an HOA insurance policy. Flood damage is the responsibility of the individual homeowners insurance policy.

3.3 Determining Useful Life and Remaining Useful Life of Assets

The projected useful life of a component is determined by manufacturers' recommendations, current age and condition, and our experience with the item. Generally the manufacturer of a product will provide guidelines for its estimated functional duration. In order to provide a meaningful estimate of remaining useful life of an asset, it is crucial to know its age. Construction of Temple Shadows HOA was single phase project. The community was built in 2001. Information provided to YKL combined with construction dates allowed us to estimate

existing life spans. During the site visit each component was observed and assessed. This assessment provides us with the ability to modify the manufacturers' useful life recommendation to reflect current conditions. Some components may have experienced overuse, requiring a reduction in the useful life, while others may have been underused, allowing an increase in their life. Thus, the actual age of the item may or may not represent its current condition. It is important to recognize the determination of useful life and remaining useful life is subjective.

Where a component necessitates specialized services beyond the expertise of the preparers of this report, including items that are not easily observable, is encountered, the appropriate service provider, familiar with such items, was contacted to supplement this study with accurate and representative information.

3.4 Estimating Replacement Costs of Assets

Determining the replacement cost of assets accurately is accomplished in several ways. The current cost associated with repairing or replacing an asset can be found from local vendors, manufacturers, or contractors. Also, comparisons can be made to other common interest developments of similar size and geographic location. Finally, estimates can be made using resources prepared in collaborative effort by construction industry professionals.

Once the current repair or replacement cost of each asset is finalized, it must be adjusted for future costs. Future costs incorporate inflation, account for some market variability, and represent the anticipated cost of the asset at the end of its useful life when it is scheduled for repair or replacement.

3.5 Maintenance Assumptions

Based on the site visit, the preparers of this report have made every effort to account for the current condition, and projected future condition of the subject components. However, we must assume the components will be properly maintained and cared for as per manufacturer's recommendations.

4.0 Funding Analysis

4.1 Funding Goals

Ultimately, the funding goals must be derived by the board elected by the HOA members. It is likely that full funding of the reserve account will require several years. This report documents the current projected reserve status over the next 30 years, as well as the projected reserve status over the next 30 years for minimum and maximum recommended funding option.

4.2 Capital Reserve Fund Income

Income for the reserve fund is a function of monthly HOA fees paid by unit owners as well as interest paid on the account balance. The funding analysis was performed using both the present HOA fee rates, and recommended HOA fee rates, with associated after-tax interest income. The post-tax interest rate used for the analysis was 0.9%. Additionally, a rate of 3.5% was used to account for inflation in the high cost scenario; a rate of 2.5% was used in the low cost scenario. As of January 2016, the capital reserve balance was \$94,627.

4.3 Projected Expenditures and Reserve Fund Needs

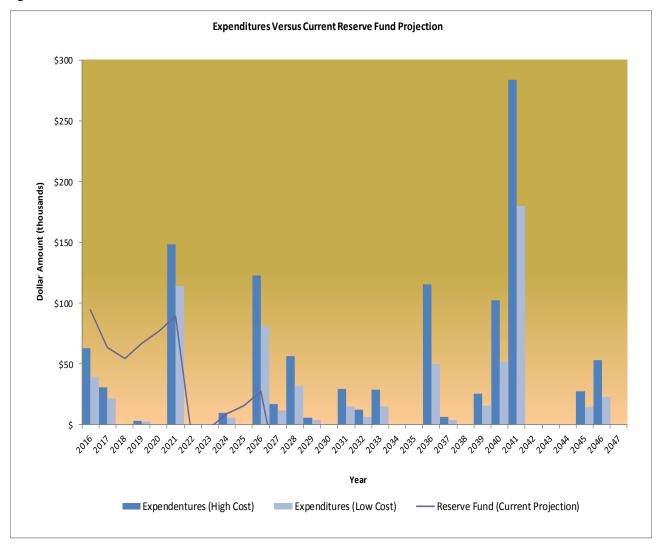
Projected expenditures and reserve fund needs are included in Table 4.3.1. Table 4.3.2 tabulates the estimated expenditures per component per life cycle. The total anticipated expenditure per component over the study period has also been included. For components that have multiple recurrences over the study period the component life cycle is multiplied by the anticipated number of recurrences.

Table 4.3.1 – List of components and corresponding data used in the analysis.

Component Name	Useful Life	Year New	Remainin g Life	Low Cost (\$)	High Cost (\$)	Unit	Quantity	Recurrence
Asphalt - 2" Overlay	20	2001	5	1.15	1.25	sf	54580	2
Asphalt - Slurry Seal	5	2011	0	0.10	0.15	sf	54580	7
Concrete - Repair/Replace	30	1987	1	15,000	20,000	ls	1	1
Exterior Repaint	12	2004	0	2.75	3.25	sf	1936	3
Roof - Ceramic Tiles	35	2001	20	6.00	12.00	sf	3250	1
Roof Drain Gutters	30	2001	15	5.00	7.00	lf	304	1
6' High PVC Vinyl Fence	e 25	2001	10	25.00	33.00	lf	1777	1
Automatic Gate	20	2001	5	4,000	5,000	ea	1	2
Light Poles	25	2001	10	752.00	952.00	ea	10	1
Interior Repaint	12	2004	0	1.00	1.25	sf	1400	3
Carpet Replacement	12	2004	0	3.50	4.50	sf	672	3
Air Conditioning Unit Replace	18	2001	3	2,500	3,000	ea	1	2
Furnace Unit Replacement	20	2001	5	2,000	2,500	ea	1	2
Hot Water Heater Replacement	12	2005	1	500	600	ea	1	3
Furniture Replacement	12	2009	5	7000	10,000	ls	1	3
Kitchen Renovation	20	2001	5	8000	12,000	ls	1	2
Restroom Renovation	20	2001	5	8000	12,000	ls	1	2
Pool Heater	12	2015	11	3000	4000	ea	2	2
Pool Sand Filter	12	2015	11	1400	1800	ea	2	2
Pool Pumps	8	2008	0	500.00	700.00	ea	3	4
Automated Chemical Dispenser	10	2006	0	2000	3500	ea	1	4
Pool Resurfacing	12	2004	0	8.00	11.00	sf	1002	3
Hot Tub Resurfacing	8	2008	0	8.00	11.00	sf	198	4
Pool Cover	12	2004	0	350.00	620.00	ea	11	3
Automated Pool Cover Housing	12	2005	1	2500	3000	ea	1	3
Pool Furniture	8	2008	0	1500	3000	ls	1	4
Non-Slip Textured Surface	12	2004	0	2.50	5.50	sf	2616	3
Playground Equipment	16	2001	1	3000	6000	ls	1	2
Tennis Court	5	2011	0	3500	7000	ls	1	7

Table 4.3.2 – Component cost per recurrence in present dollars; the total for the study period in present dollars; includes anticipated expenditure years.

Component Name	Low Cost/Recurre nce	Total Compone nt Low Cost/Stud y	High Cost/Recurrence	Total Component High Cost/Study	Expenditure Years		ars	
Asphalt - 2" Overlay	62,727	125,534	68,225	136,450	2021	2041		
Asphalt - Slurry Seal	5,458	38,206	8,187	57,309	2016	2021	2026	2031
Concrete - Repair/Replace	15,000	15,000	20,000	20,000	2017			
Exterior Repaint	5,324	15,972	6,292	18,876	2016	2028	2040	
Roof – Ceramic Tiles	19,500	19,500	39,000	39,000	2036			
Roof Drain Gutters	1,520	1,520	2,128	2,128	2031			
6' High PVC Vinyl Privacy Fence	44,425	44,425	58,641	58,641	2026			
Automatic Gate	4,000	8,000	5,000	10,000	2021	2041		
Light Poles	7,520	7,520	9,520	9,520	2026			
Interior Repaint	1,400	4,200	1,750	5,250	2016	2028	2040	
Carpet Replacement	2,352	7,056	3,024	9,072	2016	2028	2040	
Air Conditioning Unit Replacement	2,500	5,000	3,000	6,000	2019	2037		
Furnace Unit Replacement	2,000	4,000	2,500	5,000	2021	2041		
Hot Water Heater Replacement	500	1,500	600	1,800	2017	2029	2041	
Furniture Replacement	7,000	21,000	10,000	30,000	2021	2033	2045	
Kitchen Renovation	8,000	16,000	12,000	24,000	2021	2041		
Restroom Renovation	8,000	16,000	12,000	24,000	2021	2041		
Pool Heater	6,000	12,000	8,000	16,000	2027	2039		
Pool Sand Filter	2,800	5,600	3,600	7,200	2027	2039		
Pool Pumps	1,500	6,000	2,100	8,400	2016	2024	2032	2040
Pool Automated Chemical Dispenser	2,000	8,000	3,500	14,000	2016	2026	2036	2046
Pool Resurfacing	8,016	24,048	11,022	33,066	2016	2028	2040	
Hot Tub Resurfacing	1,584	6,336	2,178	8,712	2016	2024	2032	2040
Pool Cover	350	1,050	620	1,860	2016	2028	2040	
Automated Pool Cover Housing	2,500	7,500	3,000	9,000	2017	2029	2041	
Pool Furniture	1,500	6,000	3,000	12,000	2016	2024	2032	2040
Non-Slip Textured Surface	6,540	19,620	14,388	43,164	2016	2028	2040	
Playground Equipment	3,500	6,000	6,000	12,000	2017	2033		
Tennis Court	3,500	24,500	7,000	49,000	2016	2021	2026	2031


Figure 4.3.1 - Graphical representation of expenditures over the thirty year reserve study period. Expenditures vs. reserve fund balance for high and low component costs. The light and dark blue bar columns represent anticipated expenditures based on the lowest cost scenario, and the highest cost scenario. The corresponding light and dark blue lines indicates the reserve fund balance for the low and high funding, according to the allotments recommended in section 5.2

5.0 Summary and Recommendations

5.1 Current Reserve Fund Status

At the time of this report, the balance in the reserve account for Temple Shadows HOA is \$94.627. This is reflected in Figure 5.1.1, which demonstrates the current projected reserve fund versus low and high expenditures, assuming a minimal contribution of \$25 per unit per month. It is important to note that when the first **major** component (Private Road Maintenance) is scheduled to be done, in 2021, the reserve fund will be depleted. Either a large special assessment of several thousand dollars per unit will be required, or the buildings will continue to age without needed maintenance.

Figure 5.1.1 – Expenditures versus current reserve fund projection.

5.2 Recommended Funding Adjustments

The reserve fund balances shown in Figure 4.3.1 are achieved by adhering to the following recommended monthly unit costs:

Table 5.2.1 – Recommended monthly unit charge for low and high component replacement and repair costs.

Year	Monthly Unit Cost (low)	Monthly Unit Cost (high)
2016	\$40.00	\$60.00
2017	\$41.20	\$63.00
2018	\$42.44	\$66.15
2019	\$43.71	\$69.46
2020	\$45.02	\$72.93
2021	\$46.37	\$76.58
2022	\$47.76	\$80.00
2023	\$49.19	\$80.00
2024	\$50.00	\$80.00
2025	\$50.00	\$80.00
2026	\$50.00	\$80.00
2027	\$50.00	\$80.00
2028	\$50.00	\$80.00
2029	\$50.00	\$80.00
2030	\$50.00	\$80.00
2031	\$50.00	\$80.00

Year	Monthly Unit Cost (low)	Monthly Unit Cost (high)
2032	\$50.00	\$80.00
2033	\$50.00	\$80.00
2034	\$50.00	\$80.00
2035	\$50.00	\$80.00
2036	\$50.00	\$80.00
2037	\$50.00	\$80.00
2038	\$50.00	\$80.00
2039	\$50.00	\$80.00
2040	\$50.00	\$80.00
2041	\$50.00	\$80.00
2042	\$50.00	\$80.00
2043	\$50.00	\$80.00
2044	\$50.00	\$80.00
2045	\$50.00	\$80.00
2046	\$50.00	\$80.00
2047	\$50.00	\$80.00

Table 5.2.1 tabulates the recommended monthly unit contributions to the reserve fund. The low cost recommendation starts at \$40 per unit monthly for 2016, with a 3% annual increase until 2023. Starting 2024 the monthly unit charge remains static at \$50. The high cost recommendation, and the preferred findings of this report, starts at \$60 for per unit monthly for 2016. Starting 2017, the cost increases at an annual rate of 5%. In 2022 the rate remains static. It is assumed that this study will be updated at a minimum of every three years, so actual inflation

and savings rates can be recalculated, along with a revision of construction costs and repair/replacement dates.

It should be noted that the capital demand on the reserve fund represents the *future dollar* cost. To put this in perspective, a dollar in 1986 is equal to \$2.27 today, or today's dollar equals 44 cents in terms of 1986 currency. Therefore, while the recommended values 20 to 30 years out may seem unreasonably high, it is prudent to keep in mind that the contribution in *present dollar* value is likely close to 40 percent of the tabulated value.

6.0 Statement of Limitations

Every effort has been made to correctly predict component expenses over the analysis period, according to the reliability and accuracy of the information provided by manufactures, vendors, and contractors; however, due to the unique unpredictable nature of the future economic climate, the projected values and recommendations included in this study are strictly estimated representations of the true values. The more distant the year, the lower the probability the values are accurate. The model is sensitive to initial expenses – especially when inflated over 30 years – thus, depending on the economic climate, the recommended required HOA fees may need to be adjusted up or down.

The more often this report is updated, the better the fund/expense balance is met. In order to provide the greatest balance between meeting the expense demands of the association, and reducing the required monthly HOA fees, we recommend updating this report every other year. If this is not possible, an update of this report should be done *at least* every 6 years. YKL Consulting will be available to provide updates of this report, upon request, for a reduced fee.

YKL Consulting has relied on Temple Shadows HOA to disclose current pertinent financial status of the association. Assumptions regarding interest earned and inflation have been made according to the current financial trends and rates. Component and material quantities were determined by observation during the site visit by YKL associates, as noted in the photographic inventory. Inspection during the site visit was strictly for budgetary purposes. Intrusive or damaging tests were not performed.

YKL Consulting has no present or prospective interest in the property that is the subject of this reserve study, and has no personal interest or bias with respect to the parties involved. The preparers also have no bias with respect to the property that is the subject in this report or to the parties involved with the contract realizing this assignment.

We appreciate the opportunity to be of service to Temple Shadows HOA. Contact us with questions regarding the content of this report, or regarding other services we provide.

Best Regards,

Shaun H. Young, B.S. P.E.

oures

Ryan C. Kump, M.S. P.E.

15

7.0 **Author Credentials**

Shaun H. Young BS, P.E.:

Shaun graduated from the University of Utah with a bachelor's degree in Civil Engineering. He

works for a local commercial and residential land development firm since graduation. His main

areas of expertise are in site design, hydraulic analysis, hydrology, traffic analysis, government

entitlements, site development cost estimates, land surveying, and project management. Shaun is

the current past-president for the board of directors for his HOA; which consists of 228

residential units.

Mobile: 801-502-9437

Email: shaun@yklconsulting.com

Ryan C. Kump, MS, P.E.:

A 2005 University of Utah master's degree graduate in Civil Engineering, Ryan has worked as a

professional engineer for over ten years. His in-depth experience with city codes and regulations

gives him insight as to public vs. private property rights and responsibilities. He has managed

multi-million dollar construction projects and understands the costs and needs of infrastructure,

particularly as it applies to roadways and utilities. Ryan has also served as HOA Board President

of The Heights at Quarry Bend community.

Mobile: 801-598-6196

Email: ryan@yklconsulting.com

8.0 Appendix A – Terms and Definitions¹

Component – Also referred to as an "Asset." Individual line items in the Reserve Study developed or updated in the physical analysis. These elements form the building blocks for the Reserve Study. Components typically are: 1) Association responsibility, 2) with limited useful life expectancies, 3) have predictable remaining life expectancies, 4) above a minimum threshold cost, and 5) required by local codes.

Component Full Funding – When the actual (or projected) cumulative reserve balance for all components is equal to the fully funded balance.

Component Inventory – The task of selecting and quantifying reserve components. This task can be accomplished through on-site visual observations, review of association design and organizational documents, a review of established association precedents, and discussion with appropriate association representatives.

Deficit – An actual (or projected reserve balance), which is less than the fully funded balance.

Effective Age – The difference between useful life and remaining useful life (UL - RUL).

Financial Analysis – The portion of the Reserve Study where current status of the reserves (measured as cash or percent funded) and a recommended reserve contribution rate (reserve funding plan) are derived, and the projected reserve income and expenses over time is presented. The financial analysis is one of the two parts of the Reserve Study.

Fully Funded Balance – An indicator against which the actual (or projected) reserve balance can be compared. The reserve balance that is in direct proportion to the fraction of life "used up" of the current repair or replacement cost of a reserve component. This number is calculated for each component, and then summed together for an association total. FFB = Current Cost * Effective Age / Useful Life

¹ Definitions documented by the National Reserve Study Association

Fund Status – The status of the reserve fund as compared to an established benchmark, such as percent funded.

Funding Goals – Independent of calculation methodology utilized, the following represent the basic categories of funding plan goals:

- *Baseline Funding*: Establishing a reserve-funding goal of keeping the reserve balance above zero.
- *Component Full Funding*: Setting a reserve funding goal of attaining and maintaining cumulative reserves at or near 100% funded.
- *Threshold Funding*: Establishing a reserve funding goal of keeping the reserve balance above a specified dollar or percent funded amount.

Funding Plan – An association's plan to provide income to a reserve fund to offset anticipated expenditures from that fund.

Funding Principles –

- Sufficient funds when required
- Stable contributions through the year
- Evenly distributed contributions over the years
- Fiscally responsible

Life and Valuation Estimates – The task of estimating useful life, remaining useful life, and repair or replacement costs for the reserve components.

Percent Funded – The ratio, at a particular point in time (typically the beginning of the fiscal year), of the actual (or projected) reserve balance to the ideal fund balance, expressed as a percentage.

Physical Analysis – The portion of the Reserve Study where the component evaluation, condition assessment, and life and valuation estimate tasks are performed. This represents one of the two parts of the Reserve Study.

Remaining Useful Life (RUL) – Also referred to as "remaining life" (RL). The estimated time, in years, that a reserve component can be expected to continue to serve its intended function. Projects anticipated to occur in the current fiscal year have a "0" remaining useful life.

Replacement Cost – The cost of replacing, repairing, or restoring a reserve component to its original functional condition. The current replacement cost would be the cost to replace, repair, or restore the component during that particular year.

Capital Reserve Balance – Actual or projected funds as of a particular point in time (typically the beginning of the fiscal year) that the association has identified for use to defray the future repair or replacement of those major components that the association is obligated to maintain. Also known as "reserves," "reserve accounts," or "cash reserves." In this report the reserve balance is based upon information provided and is not audited.

Capital Reserve Study – A budget-planning tool, which identifies the current status of the reserve fund and a stable and equitable funding plan to offset the anticipated future major common area expenditures. The Reserve Study consists of two parts: The Physical Analysis and the Financial Analysis.

Special Assessment – An assessment levied on the members of an association in addition to regular assessments. Governing documents or local statutes often regulate special assessments.

Surplus – An actual (or projected) reserve balance that is greater than the fully funded balance.

Useful Life (UL) – Also known as "life expectancy." The estimated time, in years, that a reserve component can be expected to serve its intended function if properly constructed and maintained in its present application of installation.

$\textbf{9.0} \quad \textbf{Appendix B} - \textbf{Tabulated Inventory}$

Figure 5.2.1 – Tabulated component inventory.

Category	Component	Component Name
Drive Materials	1001	Asphalt - 2" Overlay
Drive Materials	1002	Asphalt - Slurry Seal
Drive Materials	1003	Concrete - Repair/Replace
Residential Building	2001	Exterior Repaint
Residential Building	2002	Roof - Ceramic Tiles
Residential Building	2003	Roof Drain Gutters
Common Development Items	3001	Mailboxes - Replace
Common Development Items	3002	6' High PVC Vinyl Privacy Fence
Common Development Items	3003	Wrought Iron Fencing
Common Development Items	3004	Automatic Gate
Common Development Items	3005	Light Poles
Clubhouse	4001	Interior Repaint
Clubhouse	4002	Carpet Replacement
Clubhouse	4003	Air Conditioning Unit Replacement
Clubhouse	4004	Furnace Unit Replacement
Clubhouse	4005	Hot Water Heater Replacement
Clubhouse	4006	Furniture Replacement
Clubhouse	4007	Kitchen Renovation
Clubhouse	4008	Restroom Renovation
Pool	5001	Heater
Pool	5002	Sand Filter
Pool	5003	Pumps
Pool	5004	Automated Chemical Dispenser
Pool	5005	Pool Resurfacing
Pool	5006	Hot Tub Resurfacing
Pool	5007	Pool Cover
Pool	5008	Pool Cover Housing
Pool	5009	Furniture
Pool	5010	Non-Slip Textured Surface
Outdoor Recreation Equipment	6001	Playground Equipment
Outdoor Recreation Equipment	6002	Playground Groundcover
Outdoor Recreation Equipment	6003	Tennis Court

10.0 Appendix C - Photographic Inventory

Component Name: 2" Asphalt Overlay Date of Photograph: Saturday, October 29, 2011

Component Number: Drive Materials 1001 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 20 years 15 Age of Component: years Remaining Component Life: years

Component Cost

High Replacement Cost: \$ 68,225 \$ 62,767 Low Replacement Cost:

Quantity Breakdown				
Item	Quantity	Unit		
Private Roads & Parking	54,580	Sq. Ft.		

General Description

The asphalt appeared to be in adequate condition with areas containing minor cracking. No alligator cracking or longitudinal cracks wider than 1/4 inch were observed during the walk through. An asphalt overlay is recommended every 15 to 20 years. Without an overlay, the road will eventually break apart, requiring a total reconstruction. Settling was observed throughout the community. This is typically caused by improper compaction of the base course or inadequate pavement sections. An overlay is recommended in these areas to prolong the life of the asphalt.

Component Name: Asphalt Slurry Seal Date of Photograph: Saturday, October 29, 2011 Drive Materials 1002 Shaun Young Component Number: Photograph By:

Component Duration

Component Life Expectancy: 5 years Age of Component: years 0 years Remaining Component Life:

Quantity Breakdown				
Item Quantity Unit				
Private Roads & Parking	54,580	Sq. Ft.		

Component Cost

General Description

High Replacement Cost: \$ 8,187 Low Replacement Cost: \$ 5,458

The asphalt appeared to be in adequate condition with areas showing minor cracking. A slurry seal is

recommended within the next two years. Slurry seal will help protect the asphalt from degradation by sealing cracks, preventing water seepage and damage. It also rejuvenates the surface and renews the oils, keeping the asphalt from becoming overly brittle. It appears that maintenance has been performed on the asphalt in the form of crack sealing.

Component Name: Concrete Repair/Replace Date of Photograph By:

Drive Materials 1003 Photograph By:

Date of Photograph: Saturday, October 29, 2011
Photograph By: Shaun Young

Component Duration

Component Life Expectancy:

Age of Component:

N/A years
N/A years

Remaining Component Life: N/A years

Component Cost

High Replacement Cost: \$20,000 Low Replacement Cost: \$15,000

Quantity Breakdown

Location Quantity Unit

General Description

Minor cracking and chipping were noticed at the time of the inspection. Concrete panels should be repaired and or replaced when there are 3 or more cracks that extend the full depth of the slab or if there is spalling that covers more than 25% of the panel. Protruding edges should be ground down to prevent further damage and to prevent any safety hazards. The onsite concrete flatwork was generally in good condition at the time of inspection. Utility companies should be notified to replace severely damaged concrete collars around valves and manholes.

Component Name: Exterior Painting Date of Photograph: Saturday, October 29, 2011

Component Number: Residential Building 2001 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 12 years

Age of Component: 12 years

Remaining Component Life: 0 years

Component C	ost
-------------	-----

High Replacement Cost: \$6,292

Low Replacement Cost: \$5,324

Quantity Breakdown				
Unit Types	Quantity	Units		
Clubhouse & Pool House 1.936				

General Description

The clubhouse and pool house only require paint on half of the exterior because of the rock facade. The paint appears to be in good condition and does not require immediate attention. It is estimated that the exterior will not need painting for at least 5 years.

Component Name: Roof – Ceramic Tiles Date of Photograph: Saturday, October 29, 2011

Component Number: Residential Building 2002 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 35 years
Age of Component: 15 years
Remaining Component Life: 20 years

Component Cost

High Replacement Cost: \$ 39,000 Low Replacement Cost: \$ 19,500

Quantity Breakdown			
Item	Quantity	Unit	
Clubhouse & Pool House			
Concrete/Clay tile roofing	3,250	Sq. Ft.	

General Description

The clubhouse and pool house are roofed with either a concrete or clay tile roof. This material is said to last for at least 50 years. A common issue however is the underlayment. The underlayment may last only up to 20 years. If leaks are observed the tiles may need to be taken down and a new underlayment be placed. This report assumes that's the underlayment was installed properly and will need replacing at the same time as the tiles.

Component Name: Roof Drains/Gutters Date of Photograph: Saturday, October 29, 2011

Component Number: Residential Building 2003 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 30 years
Age of Component: 15 years
Remaining Component Life: 15 years

Quantity Breakdown			
Item	Quantity	Units	
Rain Gutters		LF	

Component Cost

High Replacement Cost: \$ 2,128
Low Replacement Cost: \$ 1,520

General Description

A visual inspection of the rain gutters and down spouts shows that they appear to be in functional condition. No immediate repairs are necessary as of the date of the inspection.

Component Name: 6' High PVC Vinyl Fencing Date of Photograph: Saturday, October 29, 2011
Component Number: Common Development 3002 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: _____ 25_ years

Age of Component: 15 years
Remaining Component Life: 10 years

Component Cost

High Replacement Cost: \$58,641 Low Replacement Cost: \$44,425

Quantity BreakdownLocationQuantityUnitPerimeter of Pool139LFProperty Perimeter1,638LF

General Description

6-foot high privacy vinyl fence. Visual inspection of the fences appeared to be in relatively new condition. Upon visual inspection no major damage or cracking was found.

Date of Photograph: Component Name: Automatic Gate Saturday, October 29, 2011

Component Number: Common Development 3004 Photograph By: Shaun Young

Remaining Component Life:

Automated Entry Gate

Component Duration Component Cost

High Repair Cost: Component Life Expectancy: 20 years \$ 5,000 15 years Age of Component: Low Repair Cost: \$4,000 15 years

Quantity Breakdown Quantity Name Unit

1

Each

The automatic gate appears to be in good working condition. YKL was able to test the function of the gate

General Description

at the time of observation. It is assumed that the gate is mechanically sound.

Component Name: Light Poles Date of Photograph: Saturday, October 29, 2011

Component Number: Common Development 3005 Photograph By: Shaun Young

Component Dura	Component Duration Component Cost		onent Cost	
Component Life Expectancy: Age of Component: Remaining Component Life:	25 15 10	years years years	High Repair Cost: Low Repair Cost:	\$ 9,520 \$ 7,520
Quantity Breakd	own		Genera	l Description
Name	Quantity	Unit		
Street Light Poles	10	Each		

Component Name:Interior PaintDate of Photograph:Saturday, October 29, 2011Component Number:Clubhouse 4001Photograph By:Shaun Young

Component Duration

Component Life Expectancy: 12 years

Age of Component: 12 years

Remaining Component Life: ______0 years

Component Cost

High Replacement Cost: \$ 1,750

Low Replacement Cost: \$ 1,400

Quantity Breakdown				
Name	Quantity			
Interior Paint	1 // 00			

General Description

The interior paint of the clubhouse appears to be in as new condition. The clubhouse is approximately 10 years old; however, due to condition of the paint a new coat isn't recommended for at least 5 years.

Component Name: Carpet Replacement Date of Photograph: Saturday, October 29, 2011
Component Number: Clubhouse 4002 Photograph By: Shaun Young

Component Life Expectancy: 12 years
Age of Component: 12 years

Remaining Component Life: 0 years

Component Duration

High Repair Cost: \$3,024
Low Repair Cost: \$2,352

Component Cost

Quantity Breakdown			
Name	Quantity	Unit	
Clubhouse Carpet	672	Sq. Ft.	

General Description

The overall integrity of the carpet is sound; however, many stains were observed. This is typical of most public areas.

Component Name: Clubhouse AC Units Date of Photograph: Saturday, October 29, 2011
Component Number: Clubhouse 4003 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 18 years
Age of Component: 15 years
Remaining Component Life: 3 years

Component Cost

High Repair Cost: \$ 3,000 Low Repair Cost: \$ 2,500

Quantity Breakdown				
Name	Quantity	Unit		
Air Conditioning Units	1	Each		

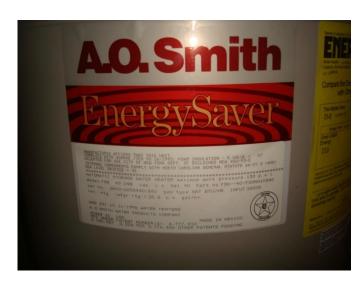
General Description

Component Name:Clubhouse FurnaceDate of Photograph:Saturday, October 29, 2011Component Number:Clubhouse 4004Photograph By:Shaun Young

Component Duration	า	Comp	onent Cost
Component Life Expectancy: Age of Component: Remaining Component Life:	20 years15 years5 years	High Repair Cost: Low Repair Cost:	\$ 2,500 \$ 2,000
Quantity Breakdowr	1	Genera	l Description

Special Notes, Comments, and Considerations

Name Quantity Breakdown


Name Quantity Unit

Furnace Units 1 Each

(YKL

Component Name:Hot Water HeaterDate of Photograph:Saturday, October 29, 2011Component Number:Clubhouse 4005Photograph By:Shaun Young

Component Dura	ation	Comp	onent Cost
Component Life Expectancy: Age of Component: Remaining Component Life:	12 years 11 years 1 years	High Repair Cost: Low Repair Cost:	\$ 600 \$ 500
Quantity Breakd	own	Genera	l Description
Name	Quantity Unit		

1

Each

Special Notes, Comments, and Considerations

Hot Water Heater

Component Name: Clubhouse Furniture Date of Photograph: Saturday, October 29, 2011
Component Number: Clubhouse 4006 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 12 years
Age of Component: 7 years

Remaining Component Life: 5 years

Component Cost

High Repair Cost: \$ 10,000 Low Repair Cost: \$ 7,000

Quantity Breakdown			
Name	Quantity		
Clubhouse Furniture	1	Each	

General Description

An allowance was used in the analysis for the clubhouse furniture. The furniture should be replaced as needed. The existing furniture appears to be in good condition with little to no visible damage.

Component Name: Kitchen Renovation Date of Photograph: Saturday, October 29, 2011
Component Number: Clubhouse 4007 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 20 years
Age of Component: 15 years

Remaining Component Life: ______5 years

Component Cost

High Repair Cost: \$ 12,000 Low Repair Cost: \$ 8,000

Quantity Breakdown			
Name	Quantity	Unit	
Kitchen Remodel	1	Each	•••

General Description

An allowance was used in the analysis for the clubhouse Kitchen. This allowance includes kitchen appliances. The kitchen appears to be in relatively new condition with no visible damages or degradation.

Component Name: Restroom Restoration Date of Photograph: Saturday, October 29, 2011
Component Number: Clubhouse 4010 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 20 years
Age of Component: 15 years

Remaining Component Life: 5 years

Component Cost

High Repair Cost: \$ 12,000 Low Repair Cost: \$ 8,000

Quantity Breakdown			
Name Quantity Unit			
Restroom Restoration	1	LS	

General Description

An allowance was used in the analysis for the multiple restrooms located within the clubhouse.

Component Name:Pool HeaterDate of Photograph:Saturday, October 29, 2011Component Number:Pool 5001Photograph By:Shaun Young

Component Duration			Component Cost	
Component Life Expecta	ancy:12	years	High Repair Cost:	\$ 4,000
Age of Compor	nent:1	years	Low Repair Cost:	\$ 3,000
D	1C. 4.4			
Remaining Component	Life:11	years		
Remaining Component	Life: 11	years		
Remaining Component Quantity Bi		years	Genera	ıl Description
		Unit	-	Il Description e pool heaters is 12 years with

Component Name: Pool Sand Filter Date of Photograph: Saturday, October 29, 2011

Component Number: Pool 5002 Photograph By: Shaun Young

Component Duration Component Cost Component Life Expectancy: 12 years High Repair Cost: \$ 1,800 Age of Component: 1 years Low Repair Cost: \$ 1,400 Remaining Component Life: 11 years General Description

Quantity Breakdown			
Name	Quantity		
Sand Filters	2	Each	

A properly maintained sand filter is expected to have a design life of 12 years is properly maintained. The filters appear to be in good condition and properly maintained which will prolong the life of these units.

Component Name: Pool Pump Date of Photograph: Saturday, October 29, 2011 Component Number: Pool 5003 Photograph By: **Shaun Young**

Component Duration

Component Life Expectancy: 8 years Age of Component: 15 years

Remaining Component Life:

Component Cost

High Repair Cost: \$ 2,100 Low Repair Cost: \$ 1,500

0 years

Quantity Breakdown Quantity Unit Name Pool & Hot Tub Pumps 3 Each

General Description

The life expectancy of a pool pump is unpredictable. The pumps will need to be replaced as needed. The pumps are beyond warranty and may need to be replaced at anytime. It is recommended that the reserve be fully funded for this item in case of pump failure.

Component Name: Pool Chemical Dispenser Date of Photograph: Saturday, October 29, 2011

Component Number: Pool 5004 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 10 years
Age of Component: 10 years

Remaining Component Life: 0 years

Component Cost

High Repair Cost: \$ 3,500 Low Repair Cost: \$ 2,000

Quantity Breakdown

Name Quantity Unit

Pool Chlorinator 1 Each

General Description

The automated salt chlorinator is expected to have a design life of approximately 10 years. This unit appears to be in new condition and may not need replacement for many years. It is estimated to having 5 years of remaining service.

Component Name:Pool ResurfacingDate of Photograph:Saturday, October 29, 2011Component Number:Pool 5005Photograph By:Shaun Young

Component Duration Component Cost

Component Life Expectancy: 12 years
Age of Component: 12 years
Remaining Component Life: 0 years

High Repair Cost: \$11,022 Low Repair Cost: \$8,016

Quantity Breakdown			
Name Quantity			
Pool Resurfacing		Sq. Ft.	

It is recommended that the pool be resurfaced when considerable amount of wear and/or chipping is observed. The pool was covered at time of visit so no observations could be made as to the condition of the surface.

General Description

Component Name: Hot Tub Resurfacing Date of Photograph: Saturday, October 29, 2011
Component Number: Pool 5006 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 8 years
Age of Component: 15 years

Remaining Component Life: 0 years

Component Cost

High Repair Cost: \$ 2,178

Low Repair Cost: \$ 1,584

Quantity Breakdown		
Name	Quantity	Unit
Hot Tub Resurfacing	198	Sq. Ft.

General Description

It is recommended that the hot tub be resurfaced when considerable amount of wear and/or chipping is observed. The hot tub was covered at time of walkthrough so no observation could be made in regards to the condition of the surface.

Component Name: Pool Cover Date of Photograph: Saturday, October 29, 2011
Component Number: Pool 5007 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: 12 years
Age of Component: 12 years

Remaining Component Life: ______0_ years

Component Cost

High Repair Cost: \$620 Low Repair Cost: \$350

Quantity Breakdown			
Name	Quantity	Unit	
Pool & Hot Tub Cover	1	LS	

General Description

The pool cover appears to be in good condition with no visible damage or degradation. The pool cover is expected to be replaced approximately every 12 years.

Component Name: Automated Pool Cover Housing Date of Photograph: Saturday, October 29, 2011

Component Number: Pool 5008 Photograph By: Shaun Young

Component Dura	tion		Comp	onent Cost
Component Life Expectancy:	12	years	High Repair Cost:	\$ 3,000
Age of Component:	11 \	years	Low Repair Cost:	\$ 2,500
Remaining Component Life:	1 \	years		
Quantity Breakdo	own		General	l Description
Name	Quantity l	Unit	The pool cover housing ap	peared to be in good

Special Notes, Comments, and Considerations

1

Each

condition upon observation. The pool cover housing

was not tested at time of visit. It is estimated that the housing will have a design life of approximately 8 years.

Automatic Pool Cover

Saturday, October 29, 2011 Component Name: Pool Furniture Date of Photograph: Component Number: Pool 5009 Photograph By: Shaun Young

Component Dur	ration		Comp	onent Cost
Component Life Expectancy:	:8	years	High Repair Cost:	\$ 3,000
Age of Component:	10	years	Low Repair Cost:	\$ 1,500
Remaining Component Life:	0	years		
Quantity Break	down		Genera	l Description
Name	Quantity	Unit	An allowance was used in	•
unge Chairs and Tables	1	Each	furniture. The furniture s	hould be replaced as needed

1 Each

Special Notes, Comments, and Considerations

Lounge Chairs and Tables

Component Name: Non-Slip Ground Surfacing Date of Photograph: Saturday, October 29, 2011
Component Number: Pool 5010 Photograph By: Shaun Young

Component Life Expectancy: 12 years
Age of Component: 12 years
Remaining Component Life: 0 years

Component Duration

High Repair Cost:\$ 14,388Low Repair Cost:\$ 6,540

Quantity Breakdown

Name
Quantity
Unit

Pool Sidewalk Non-Slip Surface
2,616
Sq. Ft.

General Description

The surface surrounding the pool has a non-slip coating. It is recommended to apply a special epoxy coating designed for pool applications as the surface wears.

Component Cost

Component Name: Playground Equipment Date of Photograph: Saturday, October 29, 2011
Component Number: Recreation Equipment 6001 Photograph By: Shaun Young

Component Duration

Component Life Expectancy: ______16_ years

Age of Component: 15 years
Remaining Component Life: 1 years

1

LS

Quantity Breakdown

Name Quantity Unit

Playground Equipment

Component Cost

High Replacement Cost: \$6,000

Low Replacement Cost: \$3,000

General Description

Commercial grade playground equipment appeared to be in relatively good condition with little to no damage. The wood decking on the playground platform is in need of wood stain or at minimum a water sealer. This will prolong the life of the structure.

Special Notes, Comments, and Considerations

The existing equipment is tagged by Playground Components of Salt Lake City. Exact replacements can be provided through said company.

Component Name:
Component Number:

Playground Groundcover

Recreation Equipment 6002

Date of Photograph: Photograph By:

Saturday, October 29, 2011

Shaun Young

Component Duration

Component Life Expectancy: 2 years

Age of Component: ______2 years

Remaining Component Life: ______0 years

Component Cost

High Replacement Cost: \$740

Low Replacement Cost: \$592

Quantity Breakdown		
Name	Quantity	Unit
Playground Mulch	1,480	Sa. Ft.

General Description

Playground covering consisted of wood mulch. Playground covering should be no less than 6 inches deep. The covering appeared to be degraded and is nearing the end of its design life. Replacement in the near future is recommended.

Component Name: Tennis Court Date of Photograph: Saturday, October 29, 2011
Component Number: Recreation Equipment 6003 Photograph By: Shaun Young

Component Cost

Component Life Expectancy: 5 years Age of Component: 5 years Remaining Component Life: 0 years

Component Duration

High Replacement Cost:	\$ 7,000
Low Replacement Cost:	\$ 3,500

Quantity Breakdown		
Name	Quantity	
Tennis Court Resurfacing	1	Each

General Description

The tennis court surface appears to be in good condition.

It is recommended that it be resurfaced every 5 years.

Cost of resurfacing will vary considerably if any leveling is required.

